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ABSTRACT: High-performance liquid chromatography (HPLC) has been used to quantify levels of free amino acids, catechins,
and caffeine in Chinese green tea. Levels of free amino acids and catechins in green tea leaves show obvious variation from spring
to summer, which is useful information to identify the production season of commercial green tea. Supervised pattern recognition
methods such as the K-nearest neighbor (KNN) method and Bayesian discriminant method (a type of linear discriminant
analysis (LDA)) were used to discriminate between the production seasons of Chinese green tea. The optimal accuracy of the
KNN method was ≤97.61 and ≤94.80% as validated by resubstitution and cross-validation tests, respectively, and that of LDA
was ≤95.22 and ≤93.54%, respectively. Compared with LDA, the KNN method did not require a Gaussian distribution and was
more accurate than LDA. The KNN method in combination with chemical analysis is recommended for discrimination of the
production seasons of Chinese green tea.
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■ INTRODUCTION
Green tea is a popular beverage that is consumed worldwide.
To produce green tea, freshly harvested leaves are immediately
steamed or roasted to prevent fermentation, thereby yielding a
dry, stable product.1 In the late 1980s to the early 1990s in
China, tea-processing technology was simple, and the types and
grades of green tea were easy to group. In this period, green tea
was usually divided into nine types. Each type was usually
separated into six grades according to the drying process and
the shape and quality of the tea leaves (see withdrawn Chinese
Standard GB/T 14456-1993). The basic principles of the
processing of green tea have not changed appreciably; each
company involved in tea production has its own unique
process, which has resulted in the production of numerous
types of green tea. Grading green-tea products according to the
previously used rules is difficult. Hence, the grading rules have
been rewritten in the new Chinese Standard for green tea
(Chinese Standard GB/T 14456-2008). At present, the season
of production, flavor, and maturity of the leaves (as judged by
their shape and quality) as well as safety are the main concerns
when consumers buy green tea. According to the growing
season, green tea can be divided into “spring tea”, “summer
tea”, and “autumn tea” in China, which refers to tea harvested
and processed before late May, between early June and early
July, and after mid-July, respectively. Autumn tea accounts for
only a small part due to the slow growth of tea plants compared
with spring tea and summer tea. In a particular tea plantation,
the chemical composition of green tea changes dramatically in
different growing seasons. Studies have shown that spring tea
commonly has higher levels of amino acids and moderate levels
of catechins (thereby yielding a heavy, mellow, and brisk
flavor), whereas summer tea usually contains higher levels of

catechins and lower levels of amino acids (leading to a more
bitter and astringent flavor).2,3 In many cases, consumers judge
the quality of green tea mainly by production season
(production date). The production season of green tea has
been an important issue that determines its price. The
identification of production season of undated green tea has
recently become one of the most important challenges for tea
researchers. Although sensory test methods are widely used in
tea quality studies, it is difficult to distinguish spring tea from
summer tea by sensory tests because the taste is affected by tea
cultivar, processing methods, and agroclimatic conditions.4 In
addition, the result assessed by tasters is often less coherent and
less impartial, because it is influenced easily by the physical or
physiological factors of tasters.5

In international trading, besides sensory assessments,
chemical components such as water-soluble extracts, total
ashes, and total polyphenols (TP) are important supplementary
markers for the quality of green tea. However, macroindicators
are useful only for poor-quality products. The color, aroma, and
taste are important aspects of tea quality and are determined by
chemicals such as theaflavins, volatile organic compounds
(VOCs), catechins, and caffeine.6 Chemical analyses in
combination with pattern recognition can overcome the
limitations of sensory tests to provide an interesting approach
to quality control in the food industry.7 Pigments such as
theaflavins have a significant influence on the color of black tea.
Theaflavins have been used for the study of tea quality
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combined with principal component analysis (PCA) and
correlation analysis.8,9 VOCs identified by a metal oxide sensor
(MOS)-based electronic nose (EN) such as (E)-2-hexenal have
been used successfully to separate tea samples using partial
least-squares (PLS) analysis, linear discriminant analysis
(LDA), PCA, and the fuzzy c means clustering algorithm
(FCM).10,11 Chemicals that have a significant influence on
flavor, such as catechins and caffeine, have been used for the
identification of tea grades using the K-nearest neighbor
(KNN) algorithm, artificial neural network (ANN), LDA, and
support vector classification (SVC) pattern recognition with
electronic tongue technology and high-performance liquid
chromatography (HPLC).4,5,12 Metal elements that relate to
the safety of tea and can reflect differences in geographical
origin have been used to classify teas and beverages by cluster
analysis (CA), PCA, LDA, probabilistic neural networks
(PNN), artificial neural networks trained by back-propagation
(BP-ANN), and soft independent modeling of class analogy
(SIMCA).13−16 Near-infrared (NIR) spectroscopy with SIMCA
and the support vector machine (SVM) has been used
successfully to identify tea categories.17,18 The studies
mentioned also demonstrated that NIR spectroscopy with the
SVM could be applied to help discriminate between types of
green tea according to geographical origin.19 Reports also
showed that multispectral imaging techniques combined with
the least-squares support vector machine (LS-SVM) method
could be used to identify tea categories.20

As far as we know, studies using chemicals to discriminate
the production season of green tea are lacking. In our earlier
study, we had difficulty separating spring green tea from
summer green tea by a single method of analysis because the
levels of chemicals and qualities of collected tea samples varied
considerably on the basis of the locations of tea gardens,
agroclimatic conditions, and type of plantation, as well as
cultivars and methods of manufacturing.
In the present study, a method of chemical analysis in

combination with pattern recognition was introduced to
discriminate between two types of green tea: spring green tea
and summer green tea. The flavor was the most significant
difference between spring green tea and summer green tea.
Earlier studies showed that the bitterness and astringency of tea
are attributed mainly to caffeine, catechins, and flavon-3-ol
glycosides,6,21 whereas several free amino acids (especially
theanine) impart a umami taste.22 Thus, in the present study,
HPLC was used for the determination of the levels of catechins
and free amino acids of 160 green tea samples produced in the
spring or summer. Further quantitative data were analyzed by
pattern recognition: the KNN method and the Bayesian
discriminant method. The present study introduced a valuable
chemometric pattern recognition technique to distinguish
between spring green tea and summer green tea.

■ MATERIALS AND METHODS
Materials. One hundred and sixty green tea samples manufactured

in the spring or summer between 2007 and 2011 were collected from
tea factories across China (i.e., the provinces of Anhui, Jiansu, Henan,
Zhejiang, Sichuan, Yunnan, and Hubei). In addition, the tea samples
collected were representative samples of each tea-producing area. The
processing of all samples was in accordance with the basic principles of
green tea production: freshly harvested leaves were immediately
steamed or roasted to prevent fermentation. All samples were stored at
−20 °C to prevent the oxidation of chemicals such as catechins.
Chemical standards of epigallocatechin (EGC), catechin (C),

epicatechin (EC), epigallocatechin gallate (EGCG), gallocatechin

gallate (GCG), epicatechin gallate (ECG), caffeine, and theanine were
purchased from Sigma-Aldrich (St. Louis, MO, USA). HPLC grade
acetonitrile, methanol, and acetic acid were obtained from Tedia
(Fairfield, OH, USA). Dissolved amino acids and an AccQ·Tag Kit
were purchased from Waters (Milford, MA, USA). The reagent kit
comprised Waters AccQ·Fluor borate buffer, Waters AccQ·Fluor
powder (6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC)),
Waters AccQ·Fluor reagent diluent, and Waters amino acid hydro-
lysate standard (each ampule contained a 2.5 mM mixture of 16 amino
acids: aspartic acid (Asp), serine (Ser), glutamic acid (Glu), glycine
(Gly), histidine (His), arginine (Arg), threonine (Thr), alanine (Ala),
proline (Pro), tyrosine (Tyr), valine (Val), methionine (Met), lysine
(Lys), isoleucine (Ile), leucine (Leu), and phenylalanine (Phe) plus
cysteine (Cys), which was present at 1.25 mM). The rest of the
reagents and solvents were of analytical grade. Water (18.2 mΩ) was
purified by a Millipore Mill-Q Ultrapure Water System (Billerica, MA,
USA).

Methods. Preparation of Tea Infusions. Tea infusions for the
analysis of catechins and caffeine concentrations were prepared
according to the procedures described in ISO standard 14502-1.23 Tea
infusions for the analysis of concentrations of free amino acids were
prepared according to the procedures described in the Chinese
Standard GB/T 8312-2002.24 The infusions for the testing of amino
acids were further diluted 1-fold with purified water and filtered using
a 0.45 μm filter before derivatization.

Analyses of Chemical Composition. The chemicals in green tea
were determined using a Waters 600E series HPLC equipped with a
quaternary pump, a 2475 fluorescence detector, and a 2489 ultraviolet
(UV)−visible detector. Catechins (EGC, C, EC, EGCG, GCG, and
ECG) and caffeine in tea infusions were analyzed on a reverse-phase
C18 column (Phenomenex Luna 5 μm, 250 mm × 4.6 mm). Detection
was carried out at 278 nm, and the injection volume was 5 μL. The
flow rate was 1.0 mL min−1, and the column temperature was
maintained at 20 °C. The mobile phase consisted of 2% aqueous acetic
acid (v/v) as solvent A, acetonitrile as solvent B, and water as solvent
C. The gradient conditions were as follows: 0−4 min, 92% A and 8%
B; 32 min, 79% A and 21% B; 37 min, 71% A and 29% B; 38 min, 0%
A and 29% B; 45−50 min, 0% A and 75% B; and 51−60 min, 92% A
and 8% B. Results were recorded using a Waters Empower 2
ChemStation and quantified with external standards (ESTD).

The levels of amino acids were measured using the Waters
AccQ·Tag method on a Waters AccQ·Tag column (Nova-Pak C18, 4
μm, 150 mm × 3.9 mm). The AccQ·Tag method is a highly sensitive,
stable, and reproducible method for amino acid analyses.25,26 The
procedures were conducted as directed in the AccQ·Fluor Reagent Kit
Care and Use Manual. The elution conditions employed were as
follows: column temperature, 37 °C; fluorescence detector, λex = 250
nm, λem = 395 nm; flow rate, 1.0 mL min−1; injection volume, 5 μL;
mobile phase A, AccQ·Tag eluent A; mobile phase B, 60% (v/v)
acetonitrile. The gradient conditions were as follows: 0 min, 100% A;
0.5 min, 98% A; 14.5 min, 93% A; 18.5 min, 90% A; 31.5 min, 67% A;
32.5 min, 90% A; 33.5−36.5 min, 0% A; and 37−47 min, 100% A. The
mixed solution of Waters amino acid hydrolysate standards
supplemented with theanine was used as a stock solution to set up
the calibration curves. In the series of standard solutions, the
concentrations of theanine ranged from 10 to 400 pmol/μL, the
concentrations of Cys were between 1.25 and 50 pmol/μL, and the
concentrations of the other 16 amino acids ranged from 2.5 to 100
pmol/μL.

Data Processing. Data are the mean values of the duplicated
analysis of each sample. Data for the amino acids, catechins, and
caffeine in 160 green tea samples were separated into two groups
according to season. Results were analyzed by SAS 9.1 software (SAS
Institute, Cary, NC, USA) and Minitab 15 software (Minitab,
University Park, PA, USA). The normal distribution (Gaussian
distribution) test of data was conducted using the Shapiro−Wilk test
using SAS software (univariate procedure). If the p value given by the
Shapiro−Wilk test was <0.05, then the test data set did not follow a
Gaussian distribution. The mean levels of chemicals in spring tea and
summer tea were compared by SAS software using the Wilcoxon two-
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sample test method (NPAR1WAY procedure). If the p value given by
the Wilcoxon two-sample test method was >0.05, then there was no
significant difference between the mean levels of chemicals between
spring tea and summer teas. The KNN method was employed to
discriminate between the production season of green tea using original
data without normal conversion, and the results of resubstitution and
cross-validation tests were compared when the K value varied from 3
to 11. Furthermore, the original data of chemical compositions were
analyzed by Minitab software for the conversion of normal distribution
and translated as

λ λ≠ ′ = −λy yif 0, then ( 1)/ (1)

λ = ′ =y yif 0, then log (2)

where y′ represents translated data and y the original data. The values
of λ were given automatically by Minitab software. The original and
translated data were analyzed by SAS software (STEPDISC procedure,
forward selection method, sle = 0.1, sls = 0.1) separately, and the
significant variables were chosen for the Bayesian discriminant method
(DISCRIM procedure). The accuracy of quadratic and linear

discriminant functions, which were built by the original data and
translated data, was compared.

■ RESULTS AND DISCUSSION

Analyses of Amino Acids. The free amino acids in tea
were detected by the AccQ·Tag method. Using individual
calibration curves, each of the free amino acids was quantified.
Green tea was rich in Asp, Ser, Glu, Gly, His, Arg, Pro,
theanine, and Met, which were >1.0 mg g−1 and together
accounted for >92.4% of the amino acids (Table 1). Theanine
was the most abundant free amino acid in tea, accounting for
>37.2% of the amino acids. Cys was absent in all tea samples.
There was a significant difference between spring tea and

summer tea with regard to the mean levels of 14 amino acids
(Glu, Gly, His, Arg, Ala, Pro, Theanine, Tyr, Val, Met, Lys, Ile,
Leu, and Phe). Six amino acids (Tyr, Val, Lys, Ile, Leu, and
Phe) showed higher levels in summer tea, whereas the others
showed higher levels in spring tea. The mean level of amino

Table 1. Average Levels of Amino Acids in Green Tea with Normal Distribution and t Testa

spring summer

parameter mean ± SD (mg g−1) p value (Shapiro−Wilk) mean ± SD p value (Shapiro−Wilk) p value (Wilcoxon)

Asp 3.950 ± 1.361 0.0218 3.514 ± 1.468 0.0598 0.2181
Ser 1.486 ± 0.84 <0.0001 1.986 ± 1.336 <0.0001 0.1715
Glu 6.094 ± 2.582 0.001 3.772 ± 1.811 0.0089 <0.0001
Gly 2.138 ± 1.506 <0.0001 1.133 ± 1.032 <0.0001 0.0003
His 2.673 ± 1.049 0.4253 1.865 ± 1.010 0.0296 0.0004
Arg 3.046 ± 2.360 <0.0001 1.221 ± 0.878 0.0002 <0.0001
Thr 0.588 ± 0.230 0.0144 0.498 ± 0.222 0.0202 0.0606
Ala 0.617 ± 0.230 <0.0001 0.47 ± 0.215 0.3103 0.0066
Pro 1.615 ± 0.701 0.0001 1.314 ± 0.560 0.317 0.0117
theanine 16.258 ± 6.990 0.0774 10.675 ± 3.824 0.2359 0.001
Tyr 0.379 ± 0.185 0.0018 0.522 ± 0.309 0.0018 0.006
Val 0.317 ± 0.228 <0.0001 0.589 ± 0.379 0.0006 0.0003
Met 3.101 ± 1.463 0.0004 1.608 ± 0.755 0.0355 <0.0001
Lys 0.466 ± 0.345 <0.0001 0.677 ± 0.483 0.0009 0.0349
Ile 0.202 ± 0.162 <0.0001 0.388 ± 0.267 0.0002 0.0002
Leu 0.369 ± 0.259 <0.0001 0.611 ± 0.402 <0.0001 0.0027
Phe 0.352 ± 0.273 <0.0001 0.727 ± 0.529 <0.0001 0.0003
AA 43.653 ± 14.93 <0.0001 31.569 ± 12.165 0.0442 <0.0001

aResults of amino acid levels are expressed as the mean ± SD. If the p value given by Shapiro−Wilk is <0.05, then the test data set is not Gaussian
distribution. If the p value given by Wilcoxon two-sample test is >0.05, then there is no significant difference between the mean levels of chemical
between the spring and summer teas. Abbreviations: aspartic acid (Asp), serine (Ser), glutamic acid (Glu), glycine (Gly), histidine (His), arginine
(Arg), threonine (Thr), alanine (Ala), proline (Pro), tyrosine (Tyr), valine (Val), methionine (Met), lysine (Lys), isoleucine (Ile), leucine (Leu),
phenylalanine (Phe), and cysteine (Cys).

Table 2. Average Levels of Catechins and Caffeine in Green Tea with Normal Distribution and t Testa

spring summer

parameter mean ± SD (mg g−1) p value (Shapiro−Wilk) mean ± SD (mg g−1) p value (Shapiro−Wilk) p value (Wilcoxon)

EGC 4.493 ± 7.862 <0.0001 6.633 ± 7.655 <0.0001 0.1303
C 0.869 ± 0.737 <0.0001 0.989 ± 1.255 <0.0001 0.0178
EC 3.205 ± 2.473 <0.0001 4.469 ± 2.643 <0.0001 0.0008
EGCG 42.172 ± 19.383 <0.0001 62.243 ± 35.966 <0.0001 0.0014
GCG 7.107 ± 7.125 <0.0001 3.817 ± 5.665 <0.0001 0.0037
ECG 12.708 ± 4.654 0.2733 15.760 ± 6.714 <0.0001 0.0194
catechins 70.554 ± 34.020 <0.0001 93.911 ± 54.588 <0.0001 0.2626
caffeine 36.558 ± 5.024 0.0111 38.721 ± 6.059 0.8111 0.0626

aResults of catechin and caffeine levels are expressed as the mean ± SD. If the p value given by Shapiro−Wilk is <0.05, then the test data set is not
Gaussian distribution. If the p value given by the Wilcoxon two-sample test is >0.05, then there is no significant difference between the mean levels of
chemical between the spring and summer teas. Abbreviations: epigallocatechin (EGC), catechin (C), epicatechin (EC), epigallocatechin gallate
(EGCG), gallocatechin gallate (GCG) and epicatechin gallate (ECG).
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acids in spring tea was 43.653 mg g−1, which was significantly
different from that seen in summer tea (31.569 mg g−1) and
was 1.38 times higher than that in summer tea. The mean level
of theanine in spring tea was 16.258 mg g−1, which was 1.51
times higher than that in summer tea (10.675 mg g−1). The
amino acid content in tea (especially theanine) is considered to
have a positive correlation with tea quality.22 The seasonal
variation of amino acid and theanine levels in the present study
was in accordance with that given in previous papers,27−29 but
the earlier studies did not clearly show the seasonal variation of
individual amino acids. The present study showed that only
eight amino acids (Glu, Gly, His, Arg, Ala, Pro, theanine, and
Met) had the same trend in seasonal variation. The Shapiro−
Wilk test showed that most of the variables did not follow a
normal distribution (P < 0.05). Nonparametric methods should
be used in the discriminant analysis if the data are not
translated into a normal distribution.
Analyses of Catechin and Caffeine. The levels of

catechins and caffeine are shown in Table 2. There were
significant differences between spring tea and summer tea with
respect to the levels of all catechins except EGC. For the
variables that showed a significant difference, only GCG
showed lower content in spring tea. The total catechins
observed were EGC, C, EC, EGCG, GCG, and ECG. On
average, EGCG was the most abundant catechin and accounted
for ≈60% of the total catechins in tea samples. Previous studies
also showed that summer green tea usually has higher levels of
tea polyphenols (TP) and galloylated catechins, whereas spring
green tea usually has a higher level of nongalloylated
catechins.27,30 Studies indicate that catechins show bitterness
and astringency and that caffeine is a bitter-tasting compound.4

However, the present study showed that there was no
significant difference in caffeine levels between spring green
tea and summer green tea, a finding consistent with previous
studies.30 Previous studies also indicated that summer green tea
showed appreciable bitterness and astringency, which was due
to an increase in the levels of galloylated catechins and a
decrease in the level of amino acids.30 Therefore, amino acids
and catechins are the optimal parameters to use to discriminate
the production season of green tea. The Shapiro−Wilk test
showed that most of the catechins and caffeine did not follow a
normal distribution, so conversion to a normal distribution was
also necessary for parametric discriminant analysis.
Discriminant Analyses Using the KNN Method. The

KNN method is a nonparametric discriminant method. The
unknown sample of the prediction set is classified according to
the majority of its K-nearest neighbors in the training set.31 The
parameter K obviously influences the identification accuracy of
the KNN model, and the optimum value of K is chosen on the
basis of the cross-validation test with the lowest error rate.32

Some original data in the present study did not follow a normal
distribution, so the KNN method was employed to discriminate
the production season of green tea without normal conversion.
The arranging K number is often an odd number such as 3, 5,
or 7 to avoid a failure in discrimination, so in the present study
we arranged the K number as 3, 5, 7, 9, and 11. The best
accuracy of resubstitution was achieved when the K number
was 5 or 7, with only four samples misclassified (Table 3). The
accuracy of cross-validation was enhanced if the K number
increased from 3 to 9, whereas the error rate was highest if K
was 9 (error rate = 6.74%). Hence, the highest accuracy of
discriminant analysis was achieved if the K number was 7, and

the accuracy of resubstitution and cross-validation was 97.61
and 94.80%, respectively.

Conversion to a Normal Distribution for the Para-
metric Discriminant Method. Discriminant methods include
parametric methods and nonparametric methods. Parametric
methods such as LDA require a normal distribution of data
(Gaussian distribution). However, many studies neglect the
requirement of a normal distribution. If the data do not follow a
normal distribution, then there would be no clear linear
boundaries for the separation of classes.13 In the present study,
conversion to a normal distribution for the parametric
discriminant method was accomplished using Minitab software.
It was very important for the conversion to a normal
distribution to find a coefficient (λ) that could guarantee the
chemical levels of spring tea and summer tea were distributed
normally after translation. The suitable intervals of λ for such a
conversion are shown in Tables 4 and 5. The median values of
the intersections were the final estimated values of λ for the
conversion to a normal distribution. Most of the data followed
a Gaussian distribution (Shapiro−Wilk test, p > 0.05) after
conversions (Tables 4 and 5), but translating levels of Gly, Ala,
Tyr, Phe, EGC, C, EC, EGCG, GCG, and ECG into a normal
distribution for spring tea and summer tea was not possible.
This was because there was no intersection of λ for these
variables, and then the medians of the intersections for spring
tea were chosen as alternatives for the conversions to a normal
distribution.

Bayesian Discriminant Analysis. LDA uses linear
combinations of data to form discriminant functions (DFs)
for the separation of categories by minimization of the within-
class and between-class ratios of the sum of squares.16 In the
present study, the Bayesian discriminant method (which is a
type of LDA) was used to separate spring tea and summer tea
using translated variables and original variables (which were not
distributed normally). The forward stepwise analysis (STEP-
DISC procedure, achieved by SAS software) was used for
selecting significant variables for discriminant analysis. There
was an obvious difference in the chosen variables using
translated variables or original variables (Table 6). The
variables Met, Tyr, Thr, Val, Lys, Pro, Phe, Ala, EC, and
EGCG were chosen for the discriminant analysis when using
the original variables, whereas Met, Tyr, Arg, EGC, caffeine,
Ser, Thr, EGCG, GCG, and theanine were used for the

Table 3. Discriminant Analysis Using K-Nearest Neighbor
Method

resubstitution results cross-validation results

K
misclassified
observationsa

error count
estimates
rate (%)

misclassified
observationsa

error count
estimates
rate (%)

3 14, 33, 56, 64,
94, 100, 111

4.36 12, 14, 31, 33, 52, 56,
62, 63, 64, 94, 100,
108, 111, 116

8.58

5 52, 56, 63, 64 2.25 12, 14, 33, 52, 56, 62,
63, 64, 108, 127

5.90

7 52, 56, 64, 127 2.39 6, 12, 13, 14, 52, 56,
63, 64, 127

5.20

9 6, 12, 13, 14, 16,
19, 23, 52, 56,
62, 63, 64

6.74 6, 12, 13, 14, 23, 52,
56, 64

4.49

11 6, 12, 13, 14, 19,
23, 33, 52, 56,
63, 64

6.18 4, 6,12, 13, 14, 16, 19,
23, 33, 46, 52, 56,
63, 64

7.87

aThe misclassified observations are identifications of each sample.

Journal of Agricultural and Food Chemistry Article

dx.doi.org/10.1021/jf301340z | J. Agric. Food Chem. 2012, 60, 7064−70707067



translated variables. The lowest value for misclassification
(4.78%) was achieved in resubstitution tests using translated
variables and unpooled covariance matrices. The lowest value

for misclassification (6.46%) was achieved in cross-validation
tests using translated variables and pooled covariance matrices.
The results showed that conversion to a normal distribution

Table 4. Normality Conversion and Normal Distribution Test for Translated Data of Amino Acid Levelsa

spring summer p value (Shapiro−Wilk)

parameter lower CL upper CL lower CL upper CL estimated λ spring summer

Asp −0.30 0.74 0.14 0.96 0.44 0.5283 0.3769
Ser −0.65 0.04 −0.28 0.35 −0.12 0.4611 0.2113
Glu −0.21 0.59 0.01 0.76 0.30 0.9696 0.1196
Gly 0.46 0.73 0.22 0.51 0.49 <0.0001 0.0028
His 0.24 1.00 0.24 0.86 0.55 0.9557 0.5743
Arg 0.10 0.31 0.02 0.54 0.21 0.0732 0.1422
Thr 0.09 0.72 −0.08 0.74 0.41 0.8317 0.5564
Ala 0.04 0.64 0.36 1.02 0.50 0.0067 0.4441
Pro −0.19 0.51 0.4 1.25 0.46 0.0741 0.0607
theanine 0.32 1.42 0.06 1.03 0.68 0.1514 0.7284
Tyr 0.03 0.66 0.00 0.68 0.35 0.9178 0.0256
Val 0.06 0.45 −0.20 0.61 0.26 0.4238 0.1095
Met −0.19 0.55 0.14 0.86 0.35 0.7192 0.5171
Lys −0.12 0.32 −0.14 0.41 0.10 0.9676 0.1666
Ile −0.07 0.34 0.10 0.63 0.22 0.9183 0.2128
Leu 0.05 0.49 0.22 0.65 0.36 0.8731 0.3225
Phe −0.18 0.28 0.00 0.52 0.14 0.8689 0.0244

aAbbreviations: aspartic acid (Asp), serine (Ser), glutamic acid (Glu), glycine (Gly), histidine (His), arginine (Arg), threonine (Thr), alanine (Ala),
proline (Pro), tyrosine (Tyr), valine (Val), methionine (Met), lysine (Lys), isoleucine (Ile), leucine (Leu), phenylalanine (Phe), and cysteine (Cys).
The lower CL and upper CL are the estimated bounds of λ for normal distribution conversion. If the p value given by Shapiro−Wilk is <0.05, then
the translated data set is not Gaussian distribution.

Table 5. Normality Conversion and Normal Distribution Test for Translated Data of Catechin and Caffeine Levelsa

spring summer p value (Shapiro−Wilk)

parameter lower CL upper CL lower CL upper CL estimated λ spring summer

EGC −0.62 −0.27 0.72 −0.27 −0.44 0.0156 <0.0001
C −0.50 −0.03 −1.06 −0.50 −0.70 0.0008 0.0880
EC −0.90 −0.26 −1.72 −0.68 −0.57 0.0505 <0.0001
EGCG −0.17 0.38 −1.35 −0.49 0.11 0.0107 <0.0001
GCG −0.05 0.28 −0.81 −0.32 0.11 0.0295 <0.0001
ECG 0.29 1.08 −1.01 0.04 −0.49 <0.0001 0.0990
caffeine −2.64 0.13 −0.02 2.32 0.06 0.1957 0.2223

aAbbreviations: epigallocatechin (EGC), catechin (C), epicatechin (EC), epigallocatechin gallate (EGCG), gallocatechin gallate (GCG), epicatechin
gallate (ECG). The lower CL and upper CL are the estimated bounds of λ for normal distribution conversion. If the p value given by Shapiro−Wilk
is <0.05, then the translated data set is not Gaussian distribution.

Table 6. Discriminant Analysis Using Bayes Discriminant Methoda

resubstitution cross-validation

data type chosen variables pooled function misclassified observation

error
rate
(%) misclassified observation

error
rate
(%)

without
translation

Met, Tyr, Thr, Val, Lys, Pro,
Phe, Ala, EC, EGCG

no quadratic 15, 16, 19, 23, 28, 33, 34,
56, 84, 110, 127, 132

7.17 15, 16, 19, 23, 24, 28, 33, 34, 43, 51, 56, 64,
84, 102, 110, 111, 117, 127, 132, 143, 151

12.94

without
translation

Met, Tyr, Thr, Val, Lys, Pro,
Phe, Ala, EC, EGCG

yes linear 11, 16, 23, 33, 110, 111,
120, 127, 137

5.77 11, 16, 23, 33, 110, 111, 120, 127, 128, 137 6.47

translated Met, Tyr, Arg, EGC, caffeine,
Ser, Thr, EGCG, GCG,
theanine

no quadratic 13, 19, 33, 36, 56, 64,
127, 151

4.78 13, 14, 19, 23, 33, 36, 56, 63, 64, 100, 110,
111, 116, 127, 132, 143, 151

10.69

translated Met, Tyr, Arg, EGC, caffeine,
Ser, Thr, EGCG, GCG,
theanine

yes linear 13, 14, 19, 23, 40, 52, 56,
64, 111, 127

5.90 13, 14, 19, 23, 40, 52, 56, 63, 64, 111, 127 6.46

aThere is an option in the DISCRIM procedure in SAS software that determines whether the pooled or within-group covariance matrix is the basis
of the measure of the squared distance. If POOL=YES is specified, the procedure uses the pooled covariance matrix in calculating the (generalized)
squared distances. Linear discriminant functions are computed. If POOL=NO is specified, the procedure uses the individual within-group covariance
matrices in calculating the distances. Quadratic discriminant functions are computed.
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could increase the accuracy of discriminant analysis when
Bayesian discriminant analysis was used.
In the present study, a method of chemical analysis in

combination with pattern recognition methods (KNN and
LDA) was introduced successfully to discriminate between two
types of green tea: spring green tea and summer green tea. The
results showed that levels of amino acids, catechins, and caffeine
were suitable parameters for discriminating between the
production seasons of Chinese green tea. The accuracy of the
KNN method was ≤97.61 and ≤94.80% as validated by
resubstitution and cross-validation tests, respectively. LDA is a
parametric method, so perhaps it would be unnecessary to
apply it in situations when the variables do not follow a
Gaussian distribution.13 We found that there were significant
differences in the chosen variables and accuracy of discriminant
functions between the original data and translated data
(Gaussian distribution). Compared with LDA, the KNN
method did not require a Gaussian distribution and was more
accurate, so the KNN method is recommended to discriminate
between the production seasons of Chinese green tea.
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